If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x-224=0
a = 1; b = -20; c = -224;
Δ = b2-4ac
Δ = -202-4·1·(-224)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-36}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+36}{2*1}=\frac{56}{2} =28 $
| v=4(212) | | 7=12+15h | | 375=7(7x+16) | | 5.4g+3=2.4g+18 | | 5a+10=-15 | | 4=y÷6 | | 5.4g+3=2.49+18 | | 3(m+7)=28 | | 44+a+10+2a=180 | | 3(m-7)=28 | | 6b^2-10b+1=0 | | 15.75+0.05h=16.53+0.13h | | y-18/10=5 | | 2z+27=71 | | c-21/12=31/2 | | z=8(12) | | 11=23-4g | | 44(a+10)=21 | | h/3+-37=-30 | | 6(2x=1)=3(x-4) | | 9x(x+6)-(3x+1)^(2)=1 | | 522=29h | | z-53/8=3 | | 3x+4(2x-5)=7x-5 | | u/6+51=43 | | 5x+7x^2=700 | | 32=4v+16 | | 116=u−341 | | 9y−12=41y−4 | | -7/5y=-5 | | 30+3c=66 | | 3d=810 |